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1. INTRODUCTION

1.1 ORIGIN & METHOD / PROPOSAL EVOLUTION

The catalog evolved as a project from discussions on hydropower new stream reach development and sustainability.  While sustainability includes balancing 
economic, social and environmental aspects, this catalog focuses on environmental metrics used in assessing the environmental effects of new hydropower 
development.  Environmental effects in this context refers to the effects on the physical and ecological functions of streams and biota. This catalog of metrics, and 
metric methodology will enable stakeholders to define, assess, and communicate their own concepts of environmental sustainability with efficacy, clarity, and 
transparency.

Cataloging environmental metrics should not be confused 
with the outcomes of existing regulatory processes since 
those Acts stipulate what agencies must do, must not do, and 
may choose to do based upon a thorough assessment of the 
project’s potential impacts and developed protection, 
mitigation and enhancement measures.  Environmental 
metrics, on the other hand, represent the most fundamental 
levels of environmental information, upon which the 
procedural stipulations mentioned above are based.  
Examining the raw information underlying the basis of 
existing protocols, certifications, regulations, and their 
outcomes is a level of transparency needed to determine the 
current state of practice and the adequacy of those processes. 
Environmental metrics also enable stakeholder input into 
regulatory decision-making that often results in trade-offs. 
This Environmental Metrics for Hydropower project will 
translate science findings into useful metrics, thereby 
enabling stakeholders and agencies to be more efficient, 
concise, transparent, and collaborative in expressing their 
priorities and concerns about hydropower development.  

The overall long-term intent of the project is to identify a 
measurable, repeatable, and broadly understandable suite of 
metrics for quantifying the environmental effects of 
hydropower. This project will also document the variability 
of metrics used to evaluate environmental impact.  The 
importance of these metrics is to help identify and quantify 
the benefits and cost options during project development. 

Figure 1 - Environmental metrics relate to only a portion of the rigorous process of hydropower design and 
permitting, which also involves socioeconomic considerations.
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Therefore, these metrics must have measurable units that are agreed upon and can be consistently applied across the U.S.

1.2 CATEGORIES OF METRICS

In the development of standard communications avenue for this study a shared terminology document (Pracheil et al. 2016) was developed that is more than a 
simple glossary.   To capture the general environmental concepts that govern river ecology, enable thematic analysis and consistent visualization of findings, the 
Environmental Metrics for Hydropower (EMH) project classifies information into 7 categories which are applicable across siting, project design and permitting 
(Figure 1).  These 7 categories are Geomorphology, Land Cover, Infrastructure and Design, Connectivity and Fragmentation, Water Quantity, Water Quality and 
Biota and Biodiversity.  As metrics were identified, they were assigned one category.

1. Geomorphology –Geomorphology is the dynamic evolution of topographic and bathymetric features created within an ecosystem. Hydropower 
development can disrupt a river system’s geomorphologic equilibrium through altered sediment and flow regimes. These changes have the potential to 
impact the availability and quality of habitat for plants and animals within the system.

2. Land cover— Land cover type (the physical material on the earth’s surface) is an important measure of ecosystem health because it influences many other 
environmental properties ranging from river and floodplain sedimentation rates to fragmentation of habitats and wildlife populations at scales ranging from 
site to landscape. Land cover changes can be used to more-fully describe ecosystem changes associated with hydropower development, such as increases 
in wetted surface from reservoir formation, and fragmentation of the surrounding landscape through installation of supporting infrastructure (e.g., 
transmission lines, roads).  Land cover characterization pre- and post-hydropower development is an important component of understanding hydropower-
affected ecosystems. 

3. Infrastructure and Design–Hydropower infrastructure involves construction of structures in-stream (for impounding water and generating power) and in 
adjacent riparian and terrestrial lands (for transmitting power and accessing the site). The selection of hydropower equipment, associated infrastructure and 
management practices can bear directly and indirectly on the other six Science Core Concepts through a variety of factors such as increased land cover 
fragmentation for running transmission lines, exposure of animals and humans to electromagnetic fields, changes in the volume and timing of water 
releases, and the use of industrial lubricants needed to keep hydropower turbines properly working.

4. Connectivity and Fragmentation— Ecosystem connectivity (the degree to which a land cover type or ecosystem maintains continuity) and fragmentation 
(the degree to which an ecosystem or land cover type is disconnected) can affect the habitat quantity and quality for organisms in an ecosystem. Dams and 
their associated infrastructure can disrupt aquatic, riparian, and terrestrial connectivity, as well as groundwater connectivity, all of which can directly 
impact biota. Quantifying connectivity changes is therefore important for a full accounting of the environmental effects of hydropower. 

5. Water Quantity –Water quantity refers to the amount of water found in-stream, in a reservoir or in groundwater stores and includes flow magnitude, 
duration, frequency, timing, and rate-of-change of flows. Hydropower development can alter the quantity of water in several ways through water storage in 
reservoirs, increased evaporation rates, change availability of in-channel water downstream of a dam, as well as change the quantity of ground water both 
upstream and downstream of dams. Because hydropower systems may be operated to fill a variety of purposes, changes to water quantity may occur at a 
variety of temporal scales ranging from diel to annual. Changes to water quantity can ultimately affect human and wildlife populations through altered 
water supplies for a variety of end uses (e.g., agricultural, drinking, municipal, industrial, recreational) and through changes in habitat availability.

6. Water Quality—Water quality characteristics such as temperature and concentrations of dissolved oxygen, velocity, nutrients and contaminants can be 
directly or indirectly affected by hydropower development and operation. Changes in water quality can adversely affect the health of humans and wildlife.

7. Biota and biodiversity—The types of plant and animal species found in a watershed, as well as their absolute abundance and relative abundance to each 
other, reflect the overall health of an ecosystem. Shifts in aquatic, riparian and terrestrial populations and communities have been linked to several aspects 
of hydropower construction and operation, including decreased longitudinal connectivity and changes in flow velocities in rivers, inundation of uplands 
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upstream of dams, changes in ground water depth both up and downstream of dams, and changes in sediment and flow regimes. Identifying metrics to 
accurately assess population and community changes are essential to understanding the environmental effects of hydropower.

1.3 METRIC TYPES

It is recognized that different metrics require different levels of analysis and interpretation.   Throughout this study metrics are assigned a type that best describes 
this level of analysis.  These are broken into three types, measurement, statistic and indicator.

Additional attributes were assigned including the type of metric: 

 Measure—a direct measurement of environmental phenomenon (e.g., 
temperature readings, species counts)

 Statistic—a mathematical summarization of collected environmental measures 
(e.g., hydrograph)

 Indicator—a measure or statistic whose values have been used to indicate 
positive or negative movement toward or away from a goal established by 
stakeholders (e.g., reforestation)

A measurement with a threshold should be a red flag to look for additional 
information/rationale behind it (i.e., we need to know the rationale taken to raise the 
measurement to the level of an indicator).

Figure 2 - Representation of metric types: measure, statistic, and indicator
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1.4 APPROACH

Documenting the metrics used to describe the environmental effects of hydropower is a difficult task, as the ‘environment’ includes aquatic and terrestrial 
ecosystems and spans multiple disciplines of environmental and ecological sciences. Executing this task must start at a very broad level, principally coming to 
a common understanding of what the “environment” includes and a common terminology of how we go about describing it. Hence, an organizational 
framework is required to catalog environmental metrics across the many dimensions of the environmental science space. In developing the framework for the 
metric extraction, ORNL developed a working document titled Environmental Metrics for New Hydropower: Terminology and Categories (Pracheil, et. al. 
2016) which is more than a simple glossary.  It specifies and categorizes environmental metrics (Section I), defines relevant environmental terminology 
(Section II), and defines general ecological concepts (Section III) needed to foster clear communication about 
environmental issues pertaining to hydropower development and operation.

Environmental metrics were extracted from multiple sources: (1) International Hydropower Association (IHA) 
Hydropower Sustainability Assessment Protocol (HSAP) (2) Low Impact Hydropower Institute (LIHI) (3) Federal 
Energy Regulatory Commission (FERC) and (4) Systematic review of the peer-reviewed scholarly literature using 
guidelines established by the Center for Environmental Evidence (CEE 2013)  The environmental metrics used by 
hydropower certificatory bodies (LIHI, IHA) and the current U.S hydropower regulatory domain (FERC licenses) 
including their satisfaction of other pieces of the current hydropower regulation such as National Environmental 
Policy Act (NEPA) and Council on Environmental Quality (CEQ), which require several metrics to be evaluated. 
Because the dimensions of environmental information can be described in multiple levels of detail, a hierarchical 
template was developed to organize the catalog of metrics and their attributes. This included the development of 7 
main environmental categories, which are divided into 45 more specific parameter categories, in addition to a 
number of attributes describing the hydropower project and systems under consideration for each metric.  
Additionally, a template was devised to describe the nature of how metrics convey information, such as in raw 
measurements, statistical summarization, or in the form of indicators that inherently contain heuristic values.  

The process of extracting metrics for each of these sectors is provided in more detail below.

1.4.1 International Hydropower Association (IHA) Projects

Environmental metrics were captured from a subset of 13 hydropower 
projects that have been reviewed and published using the International 
Hydropower Association’s (IHA’s) Hydropower Sustainability Assessment 
Protocol (HSAP). All 13 published IHA HSAP projects were reviewed for 
sustainability scores and gaps, dam locations were determined using Google Earth, and a crosswalk chart of definitions 
was developed to facilitate understanding of the different sustainability topics which apply at each of the four stages of 
HSAP application (i.e., Early stage, Preparation stage, Implementation stage, or Operation stage). 

Figure 4 - Logo for IHA International 
Hydropower Sustainability Assessment 

Protocol

Figure 3- Raw metric extraction to Catalog
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Figure 6 - IHA sustainability protocol 'Biodiversity and Invasive Species' scores

An initial subset of IHA projects was selected to span the globe, as shown in Figure 5. 
Table 1 lists details of the 4 IHA projects selected for detailed environmental metrics 
extraction.

Table 1 - List of IHA hydropower projects reviewed for environmental metrics

Three elements to consider in an IHA Hydropower Sustainability Assessment:
1. "The graded performance within each sustainability topic provides the 

opportunity to promote structured continuous improvement."  (HSAP Nov2010)
2. "The HSAP should be applied in a collaborative way, to ensure the best 

availability of information and points of view. The development and evaluation of a hydropower project will involve many actors with different roles and 
responsibilities. It is recognized that both development and operation may 
involve public entities, private companies or combined partnerships, and 
responsibilities may change as the project progresses through its life 
cycle." (HSAP Nov2010)

3. "The terms and conditions define an official assessment as one which: (1) 
Is carried out by an independent accredited assessor; (2) Involves the 
principal organisation responsible for the project [at the current stage], 
demonstrated by their written support; and (3) Meets any other guidelines 
for official assessment published by the Hydropower Sustainability 
Assessment Council." (HSAP Nov2010)

Each HSAP sustainability score reflects the graded performance of the project from 
lowest level (1) to highest level (5) relative to good and best practices across the 
industry. The recorded scores and gaps are meant to provide the opportunity to 
promote structured continuous improvement and are not intended for pass/fail 
determination. Figure 6 provides an example of how all of the published IHA 

Figure 5 - International Hydropower Sustainability Assessment projects
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LIHI impact criteria
 Ecological Flow Regimes
 Water Quality Protection
 Upstream Fish Passage
 Downstream Fish Passage and Protection
 Watershed and Shoreline Protection
 Threatened and Endangered Species Protection
 Cultural and Historic Resource Protection** 
 Recreational Resources** 

**Not addressed

projects scored with regard to the ‘Biodiversity and invasive species’ sustainability topic. For this topic, only one project (Trevallyn) showed a significant gap 
relative to good practices. Three projects (Romanche-Gavet, Keeyask, and Santo Antônio) were found to meet the best possible practices with regard to 
biodiversity.

Disentangling environmental metrics from socioeconomic metrics proved difficult due to IHA’s integrated evaluation approach.
Environmental metrics were found to be closely associated with these HSAP sustainability topic areas: 

 Biodiversity and invasive species
 Downstream flow regimes 
 Erosion and sedimentation
 Reservoir planning
 Waste, noise and air quality
 Water quality

A total of 100 environmental metrics corresponding to all of the 7 EMH Categories were gleaned from the analysis of the four 4 IHA projects selected for detailed 
analysis. An additional 7 metrics not pertaining to the EMH categories were also captured in the metrics database for future consideration. These 7 metrics related 
to air quality, noise, solid waste generation, soil contamination and electromagnetism.

1.4.2 Low Impact Hydropower Institute (LIHI)/ Federal Energy Regulatory Commission (FERC) 

In order to provide a sub-sample of environmental metrics applied within LIHI protocols and FERC regulations, five U.S. non-federal hydropower projects were 
chosen that were both (a) LIHI certified, and (b) have recently undergone FERC relicensing (Figure 7). Projects were selected to represent different geographical 
regions of the U.S. and a diversity in project sizes (megawatt capacity and 
infrastructure). Selected projects and their characteristics are listed in Table 1.  

For each project, all LIHI documentation was openly available through the 
institute’s webpage and reviewed. The structure of the LIHI certification process is 

defined by eight social 
and environmental 
impact criteria (listed 
below), each addressed 
through a series of goal 
statements that define 
the purpose or objective 
that must be satisfied 
(Sale et al. 2016).

A series of alternative 
standards are provided 
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Figure 7.  Locations of non-Federal U.S. Hydropower projects certified by LIHI and 
recently relicensed by FERC.

by which each criteria goal can be met. After consultation with LIHI staff, applicants prepare an application, which includes a description of project facilities and a 
standardized LIHI questionnaire. The questionnaire is structured to document how the applicant has addressed each of the eight criteria through a standard(s). 
Additional supporting documents, such as fish passage plans, monitoring plans, and maps of facilities are provided.
For the same projects, FERC orders issuing new licenses and notices of environmental assessments (including the environmental impact assessment) were 
obtained from FERC e-library and reviewed. Typically, FERC orders are structured to provide a description of project facilities, followed by discussion of major 
environmental elements and stakeholder concerns, and then subsequent articles specifying the approved facilities and operations, including how environmental 
impacts are addressed. For a review of the detail of environmental information (including mitigation requirements) provided by FERC order approvals, please see 
Schramm et al. (2016). Because FERC specifies facility dimensions and capacities 
(e.g., dam storage) as apart of licensed projects, these elements are interpreted as 
metrics describing environmental impact along with traditional metrics (e.g., water 
temperature). For instance, if the licensee increases the capacity of a project, this will 
likely require re-opening a license, as potential subsequent environmental impacts 
must be reassessed.    

Table 2. List of five FERC/LIHI projects reviewed for environmental metrics*

Hydropower Project FERC No. LIHI 
No.

U.S. 
State

River Owner Capacity 
(MW)

Average 
Annual 
Gener-ation 
(MWh)

Metrics

Bowersock Project 13526 15 KS Kansas River Bowersock Mills 
and Power 
Company

7 32,726 71 FERC, 46 
LIHI

Holtwood Hydroelectric 
Project

1881 116 PA Susque-hanna 
River

PPL Holtwood, 
LLC

252 590,044 132 FERC, 32 
LIHI

Milford Hydroelectric 
Project (includes Milford 
Dam & Gilmans Falls 
Dam)

2534 113 ME Penobscot River; 
Stillwater 
Branch

Black Bear Hydro 
Partners, LLC

7.8 55,186 39 FERC, 16 
LIHI

Nisqually Project (includes 
La Grande and Alder 
dams)

1862 8 WA Nisqually River City of Tacoma 114 573,000 41 LIHI

Smoky Mountain Project 2169 18 NC, TN Little Tennessee Brookfield Smoky 376.6 1,361,821 461 FERC, 30 
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(includes Chilhowee, 
Calderwood, Cheoah, and 
Santeetlah dams)

River Mountain 
Hydropower LLC

LIHI

*Source Documents:

FERC. (1998). Order Issuing New License. Project No. 2534-005. Bangor-Hydro-Electric Company, Milford Project. April 20, 1998.
FERC. (2004). Notice of availability of environmental assessment. Alcoa Power Generating, Inc. Tapoco Project No. 2169-020. March 15, 2004
FERC. (2004). Notice of availability of final environmental assessment. Bangor-Pacific Hydro Associates. Project No. 2600-056. Final environmental 

assessment on ammendment of licenses: Veazie Hydroelectric Project, FERC No. 2403-048; Milford Hydroelectric Project, FERC No. 2534-068; 
West Enfield Hydroelectric Project, FERC No. 2600-056; Medway Hydroelectric Project, FERC No. 2666-023; Stillwater Hydroelectric Project, 
FERC No. 2712-055. April 18, 2005.

FERC. (2005). Order approving settlement and issuing new license. Project No. 2169-020. Alcoa Power Generating Inc., Tapoco Hydroelectric Project. 
January 25, 2005.

FERC. (2008). Draft Environmental Impact Statement for License Amendment. Holtwood Hydroelectric Project, FERC Project No. 1881-054, 
Pennsylvania. July 2008.

FERC. (2009). Order amending license and revising annual charges. Project No. 1881-054. PPL Holtwood, LLC. October 30, 2009.
FERC. (2010). Order Issuing Original License and terminating exemption from license. Project No. 13526-002; Project No. 2644-001. Bowersock Mills 

and Power Company. August 19, 2010.
FERC. (2010). Notice of availability of environmental assessment. Project No.13526-002. Bowersock Mills and Power Company. August 19, 2010
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1.4.3 Peer-Reviewed Scholarly Literature 

Using guidelines established by the Center for Environmental 
Evidence (CEE 2013), a selection of peer-reviewed scholarly 
literature was identified to extract environmental metrics for 
Hydropower.  The systematic reviews set forth rigorous and 
repeatable study inclusion criteria and documentation of 
environmental and hydropower search terms, search dates, and 
studies included so the review is replicable. This strict 
methodology of systematic review reduces biases in the studies 
selected for inclusion.  This process has yielded 1,508 papers that 
are under detailed review extracting relevant environmental 
metrics.  For more detailed explanation of this methodology and 
search terms please see Appendix A.   From these a random subset 
of 247 papers were chosen to review.  Of this subset, 97 articles 
listed in Appendix B and summarized in Appendix C contained 
environmental metrics.  These environmental metrics were 
incorporated into a catalog including all information relevant to the 
metric (e.g., values of the metric, methods of data collection, 
temporal and spatial resolution).  

1.4.4 Appropriate Use / Intended Use

The definition of combinations of metrics that assess environmental sustainability in specific instances is the purview of stakeholders and is beyond the scope of 
this study. Follow-on research efforts may advance stakeholder-driven sustainability protocols. This study will not address the role of hydropower development in 
altering carbon cycling, but the metrics developed in this study may prove useful within that research domain.

Figure 8 - Systematic Review of Scholarly Peer-Reviewed Literature
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2. OTHER TYPES OF INFORMATION EXTRACTED

2.1 PROJECT LOCATION

As environmental metric information was gathered, the site locations of specific studies (Figure 9) were linked in the database to the National Hydropower Asset 
Assessment Program (NHAAP) database and National Inventory of Dams (NID) for hydropower facilities in the United States and the Global Reservoir and Dam 
(GRanD) database for non-U.S. hydropower projects. Online searches were conducted for hydropower projects that were not listed in any of these datasets. We 
also used NHAAP, NID and GRanD obtain ancillary information such as generating capacity, generation, dam characteristics, and reservoir properties: 

 Figure 9 - Map showing the 231 study locations used to collect the metrics recorded for this analysis of the environmental effects of hydropower.
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2.2 PROJECT STATUS

Six hydropower life cycles have been defined by the ORNL Standard Modular Hydropower project (reference): (1) initial project determination, (2) permitting & 
regulatory approval, (3) pre-commissioning activities, (4) construction, (5) operations & maintenance, and (6) decommissioning.     During metric extraction, the 
life cycle stage of the dam at the time that the referenced document was prepared is captured.

Figure 10 - The represented phases of hydropower development associated with the extracted metrics.
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2.3 SPATIAL SCALE

Metrics are applied at different scales, so we recorded spatial information according to the names and definitions shown in Table 2. The frequency of the 
environmental metrics captured across these different scales is shown in Figure 12.

Table 3 Spatial scales of environmental metrics related to hydropower

Spatial Scale Definition Examples
Within dam Metrics associated with internal dam components Turbine type
Dam Metrics associated with the dam itself Fish passage; Seismic stability
Reservoir Metrics associated with the impoundment located immediately upstream of the dam Shoreline erosion; Algal blooms; Siltation rates; 

Offgassing
River_downstream Metrics associated with the river downstream of the dam, including the tailwater Flow rate; Dissolved oxygen levels; Water 

temperature; Fish counts
River_upstream Metrics associated with the upstream mainstem and tributaries Flow rate; Dissolved oxygen levels; Water 

temperature; Fish counts
Basin Metrics associated with the watershed in which the hydropower project is located Water consumption rates; Number of stream 

tributaries
Landscape Metrics associated with the terrestrial landscape surrounding the hydropower 

project
Percent forest cover; Number of road crossings; 
Miles of transmission lines

Project Metrics associated with the entire hydropower project (e.g., multiple dams) Water temperature; Fish condition; Genetic diversity

Figure 11 - Spatial scale associated with catalogued metrics.
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3. RESULTING SET OF ENVIRONMENTAL METRICS

To capture a broad swath of measurements from multiple sectors concerned with potential hydropower impacts, we based our literature review of environmental 
metrics on a combination of FERC regulatory documents, LIHI and IHA HSAP certification documents, and peer-reviewed scientific journal articles. Our review 
of the 117 documents yielded a set of 3183 environmental metrics recorded during a variety of studies related to dams and hydropower projects. These metrics 
were related to 231 dams and study locations worldwide (Figure 9). Note that several of these points indicate multiple small dams aggregated within a single study. 
Most of the study sites were in North America (121) and Europe (53), followed by South America (29), Asia (20), Africa (6) and Australia (2). The dams ranged in 
size from small earthen dams (and even one inflatable dam) built solely for irrigation, flood control, and/or recreational purposes to powered dams with capacities 
ranging from micro size (i.e., less than 0.1 MW) to as much as 22,500 MW. The literature review included dams assessed across all lifecycle stages (Figure 10), 
but most of the metrics were collected from dams in the operations and maintenance stage.

The geographic distribution, size and ownership of the U.S. dams captured by this literature review relative to the entire U.S. hydropower fleet is shown in Figure 
12. Note that the nonpowered dams captured by the literature review are dams currently managed for flood control, irrigation and/or recreational purposes with no 
electric power generation as well as a few dams that no longer generate power because they have been decommissioned). This comparison shows that our literature 
review ended up being biased toward larger, federally owned dams. Small U.S. dams (0.1 to 10 MW) seem to be particularly underrepresented by this dataset of 
environmental metrics. We were unable to do a similar comparison for the non-U.S. dams due to insufficient hydropower fleet data at the global scale.

A summary of the 3183 captured environmental metrics by category, sector and type is shown in a “dashboard” format in Figure 13. Frequency distributions of the 
metrics by category and source document type are provided in Figure 14. Irrespective of literature source, most metrics were related to Water Quantity and Water 
Quality categories, many metrics were related to Biota & Biodiversity, and relatively few metrics were related to the other four categories of Geomorphology, 
Land Cover, Connectivity & Fragmentation, and Infrastructure & Design. An analysis of the metric distributions broken out for each document type shows that 
there was not much consistency between the source documents (Figure 14). The journal articles and IHA HSAP documents focused more on Water Quality than 
Water Quantity. A majority of the Geomorphology metrics came from journal articles and FERC documents, while none were identified in the LIHI documents. 
Infrastructure & Design metrics were much more prevalent in the FERC and LIHI documents than the journal articles and IHA HSAP documents.

The geographic distribution of the collected metrics by continent and U.S. region is provided in Figure 15. Figure 15A shows a predominance of water quantity 
and water quality metrics across all continents with a more even mix of the two categories across Europe, South America, Africa and Asia. Given that the pie sizes 
indicate the relative number of metrics collected across each continent, one can see that the environmental metrics captured by the database are largely from North 
America and Europe with very few from Oceania. A distribution of the metrics by category across seven U.S. regions reflecting aggregations of river basins 
mapped by the U.S. Geological Survey (Figure 15B) shows that a substantial number of environmental metrics were captured from documents pertaining to the 
Southeastern U.S. and that water quantity metrics predominated in all regions except for the Northeast. The Northeastern U.S. showed a more even distribution of 
metrics across the seven categories, with the largest number of metrics gathered in the category of Biota and Biodiversity.

Examination of the entire set of collected environmental metrics showed coalescence around 45 parameters, or subcategories, of environmental metrics (Table 4) 
and that most of these subcategories were represented by all three metric types. Details about metrics collected in each of the seven categories are provided in 
Sections 3.1-3.7.
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Figure 12 - Size and ownership distribution of U.S. hydropower projects captured by this environmental metrics for hydropower literature review (left) relative to the entire U.S. 
hydropower fleet (right).  
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Figure 13 - Summary of captured environmental metrics by category, sector and type.
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Figure 14- Distribution of the environmental metrics by category and document type
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Figure 15- Geographic distribution of the collected environmental metrics by continent (top) and by U.S. region (bottom).
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Table 4 Emergent sub-categories (45) of the environmental metrics (3183) collected through this literature review of 117 documents. Metrics totals are also shown by 
type: M = Measures, S = Statistics, and I = Indicators.

Category Parameter Name Parameter Description M S I Metrics
Biota & Biodiversity BB_Abundance, density Count or other measures of organisms per area 42 52 6 100

BB_Behavior, movement Behavior of organisms including movement 
pattern, distance, duration, timing, and frequency

9 2 1 12

BB_Colonization, extinction Colonization or extinction of organisms in a study 
area

0 0 1 1

BB_Demographics, age, sex, size Population demographics, including age, sex, and 
size

27 8 0 35

BB_Fitness, survival, growth, 
condition, reproduction, mortality

Fitness, survival, growth, condition, reproduction, 
or mortality of organisms

34 38 6 78

BB_Functional group, or species or 
trait composition

Grouping of organisms by functional or trait 
status, percentage composition

34 12 20 66

BB_Genetics, mixing, 
metapopulation

Genetics and population mixing, including 
metapopulation dynamics

0 7 5 12

BB_Habitat, critical habitat, or 
surrogates of such

Indices of habitat, area, suitability, and so on, for 
organisms

25 4 28 57

BB_Internal composition nutrient 
abnormalities

Nutritional composition and makeup of 
organisms, including elemental stoichiometry. 
Includes levels of internal homeostasis, as well as 
morphological, genetic, or hormonal 
abnormalities caused by contaminants

0 3 0 3

BB_Life history trait characteristics Life history trait characteristics and their values, 
such as duration of spawning, fecundity, 
reproductive mode (note this category deals only 
with characteristics themselves and not the 
composition of the community.)

8 14 1 23

BB_Presence, absence, occupancy, or 
detection

Organism presence/absence in an area (including 
pseudo-absence), occupancy, and detection 
probability

51 2 13 66
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BB_Richness, diversity, evenness, or 
IBI types of measures

Species richness, diversity, evenness, or indices-
of-biotic-integrity metrics used to characterize one 
or more components of the biotic community

33 4 19 56

Connectivity & 
Fragmentation

CF_Basin area Some aspect of area of river basin 8 0 1 9

CF_Dendritic network and riverscape Fragment length, dendritic connectivity index, 
barrier index, river distance between dams and 
projects

96 5 73 174

CF_Fish passage Mitigated fish passage, including presence of 
upstream or downstream passage or length of 
bypass

16 14 4 34

Geomorphology GM_Catchment and basin attributes Upland soil characteristics, topography, and 
landscape erodibility metrics that could influence 
soil erosion and wasting related and subsequent 
sedimentation related to hydropower development

15 5 2 22

GM_Channel Channel properties such as bankfull width, wetted 
width, bankfull discharge, channel slope, braided 
channel, channelization

56 18 18 91

GM_Flooplain valley Metrics related to channel confinement, 
entrenchment, migration, etc.

10 2 6 18

GM_Sediment and substrate Sediment and substrate properties such as 
substrate particle size, bedload, sediment 
entrainment or deposition, bedrock composition

31 25 14 70

Infrastructure & 
Design

ID_Dam attributes Head, dam height, spill gate type, bar rack, and so 
on

97 2 5 104

ID_Fish passage Characteristics of fish passage structures such as 
slope, velocity, and discharge

9 0 2 11

ID_Turbine Turbine characteristics including forces in the 
turbine environment such as pressure, shear, 
cavitation, turbine type, turbine speed, blade strike

15 5 1 21
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Land Cover LC_Area impacted, project area Project boundary area, area impacted by the 
project as whole, not related to reservoir 
inundation or land cover

41 0 2 43

LC_Floodplain or riparian vegetation Properties of floodplain or riparian vegetation 
such as riparian encroachment or floodplain area

1 0 0 1

LC_Land cover class Type of land cover, changes in land cover 13 19 4 36
LC_Protected land Spatial properties of protected lands including 

losses or increases
14 3 3 20

LC_Reservoir inundation Reservoir area, upland or floodplain inundation, 
biomass inundated/lost

20 2 0 22

Water Quantity W1_Basin attributes Attributes related to factors that influence 
hydrology (or were used in the context of 
hydrology), such as climate and precipitation

2 1 3 7

W1_Diversion Quantitative properties of diversions such as 
volume or discharge of diversion or water for 
other uses

6 1 1 8

W1_Downstream discharge and 
hydrology

Measures that describe the magnitude, frequency, 
duration, periodicity, and timing of flows 
downstream of a hydropower facility, including 
changes to these characteristics

89 514 272 875

W1_Groundwater Groundwater characteristics 3 19 0 22
W1_Reservoir hydrology Reservoir hydrological characteristics such as 

residence time, reservoir fluctuation, reservoir 
surface area, or degree of regulation

61 16 8 85

W1_Upstream regulation and inflow Measures describing the magnitude, frequency, 
duration, periodicity, and timing of flows 
upstream of a hydropower facility, including 
changes to these characteristics

25 11 1 37

Water Quality W2_Algae, primary productivity Algal concentration including measures of 
primary productivity such as chlorophyll A or 
cyanotoxin.

25 7 2 33

W2_Buffering capacity Characteristics including pH, alkalinity 26 9 0 35
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W2_Dissolved gasses Concentration of non-greenhouse gases in water 9 0 0 9

W2_Dissolved oxygen Dissolved oxygen in water 9 9 2 20
W2_Ecosystem function Ecosystem vital rates and processes, including 

gross primary productivity, respiration, 
biochemical oxygen demand

5 7 1 13

W2_Gas emissions Concentration and ebullution of water-origin 
greenhouse gases

12 17 1 30

W2_Nutrients All non-rare elements essential to life:  nitrogen, 
phosphorous, inorganic carbon, potassium, sulfur, 
and magnesium compounds (rare essential 
elements are included in "other elements")

99 42 2 143

W2_Organic material Dissolved organic carbon and other organic non-
pollutants

7 1 1 9

W2_Other elements Elements and compounds that are not listed on the 
EPA Toxic and Priority Pollutants list

461 9 0 470

W2_Pollutants Pollutants listed on the EPA Toxic and Priority 
Pollutants list that are not included in other EMH 
categories

69 0 7 71

W2_Solid transport, turbidity, and 
conductivity

Descriptions of dissolved and suspended solids in 
water such as turbidity, suspended or dissolved 
solids, conductance

53 13 4 70

W2_Temperature Water temperature 33 18 4 60
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3.1 GM_Geomorophology
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3.1.1 GM_Catchment and basin attributes
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3.1.2 GM_Channel



ORNL Catalog of Environmental Metrics for Hydropower - 31

3.1.3 GM_Floodplain valley



ORNL Catalog of Environmental Metrics for Hydropower - 32

3.1.4 GM_Sediment and substrate
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3.2 LC_Land Cover
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3.2.1 LC_Area impacted, project area
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3.2.2 LC_Floodplain or riparian vegetation
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3.2.3 LC_Land cover class
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3.2.4 LC_Protected land
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3.2.5 LC_Reservoir inundation
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3.3 ID_Infrastructure and Design 
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3.3.1 ID_Dam Attributes
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3.3.2 ID_Fish passage
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3.3.3 ID_Turbine
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3.4 CF_Connectivity and Fragmentation
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3.4.1 CF_Basin Area
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3.4.2 CF_Dendritic network and riverscape
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3.4.3 CF_Fish Passage
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3.5 W1_Water Quantity
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3.5.1 W1_Basin Attributes
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3.5.2 W1_Diversion
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3.5.3 W1_Downstream discharge and hydrology
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3.5.4 W1_Groundwater
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3.5.5 W1_Reservoir hydrology
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3.5.6 W1_Upstream regulation and inflow
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3.6 W2_Water Quality
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3.6.1 W2_Algae, Primary Productivity
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3.6.2 W2_Buffering Capacity
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3.6.3 W2_Dissolved Gasses
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3.6.4 W2_Dissovled Oxygen
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3.6.5 W2_Dissolved Oxygen
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3.6.6 W2_Ecosytem Function
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3.6.7 W2_Gas Emissions
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3.6.8 W2_Nutrients
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3.6.9 W2_Organic Material
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3.6.10 W2_Other elements
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3.6.11 W2_Pollutants
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3.6.12 W2_Solid Transport, Turbidity & Conductivity
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3.7 BB_Biota and Biodiversity
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3.7.1 BB_Abundance, density
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3.7.2 BB_behavior, movement
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3.7.3 BB_Colonization, extinction
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3.7.4 BB_Demographics, age, sex, size
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3.7.5 BB_Fitness, survival, growth, condition, reproduction, mortality
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3.7.6 BB_Functioanl group, or species or trait composition
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3.7.7 BB_Functional group, or species or trait composition
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3.7.8 BB_Genetics, mixing, metapopulation
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3.7.9 BB_Habitat, critical habitat, or surrogates of such
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3.7.10 BB_Internal composition nutrient abnormalities
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3.7.11 BB_Internal composition nutrient abnormalities
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3.7.12 BB_Life history trait characteristics
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3.7.13 BB_Presence, absence, occupancy or detection
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3.7.14 BB_Richness, diversity, evenness, or IBI types of measures
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APPENDIXA. SYSTEMATIC REVIEW OF PEER-REVIEWED SCHOLARLY LITERATURE 
ON HYDROPOWER METRICS  

Systematic review of peer-reviewed scholarly literature on hydropower metrics

Generation of search strings

This study employs a systematic review of scientific peer-review journal articles to summarize metrics 
that have been used to quantify the effects of hydropower. Systematic reviews set forth rigorous and 
repeatable study inclusion criteria and documentation (including stakeholder input, where appropriate) of 
search terms, search dates, and which studies were and were not included so that the body of literature 
discovered and included in the review is not only replicable, but is also unbiased with respect to point-of-
view (CEE 2013). For example, one hydropower stakeholder conducting a systematic review may only 
choose a search string such as “hydropower impact” which suggests negative environmental 
consequences, whereas a different hydropower stakeholder may choose the search string “hydropower 
effect” which is impartial to the direction of change. While each of these search strings will likely 
discover some overlapping literature, it is also likely that there will be some peer-reviewed articles that 
appear in one search string and not the other. In this example, both search strings would be important to 
include because all stakeholder viewpoints are imperative for presenting an unbiased review and using 
search strings that discover all relevant bodies of literature are important. Therefore, obtaining 
stakeholder input on search strings is a critical component for obtaining an unbiased perspective of the 
literature. 

Whenever possible, open-access or open-access compatible databases and tools were used to ensure 
transparency and availability to the entire stakeholder community with the understanding that many will 
not have access to proprietary search and reference management tools.
Also, although the importance and relevance of gray literature to hydropower regulatory decision making 
is recognized, it was excluded from the systematic review for three primary reasons. First, representing 
this body of literature in a consistent or representative way is difficult due to difficulties in securing and 
discovering texts. Second, reviewing gray literature presents a unique challenge compared to peer-review 
literature because peer-reviewed papers are, by definition, reviewed by other experts. Evaluation of the 
scientific rigor of gray literature can vary by the author/ authoring organization’s policies and 
encompasses the spectrum from an equally or more rigorous process to that found in the peer-reindicview 
literature to no additional review. Third, a parallel review of hydropower regulation and certification 
documents will be ongoing as part of this project that will incorporate gray literature that has been used in 
hydropower decision-making. Furthermore, because gray literature included in hydropower regulation 
and certification documents has been scrutinized as part of the licensing or certification process, there is 
presumably some threshold of scientific rigor that has been surpassed. 
Initial search strings (insert table of search strings) were obtained from discussion among four ORNL 
research staff with hydropower industry, hydropower environmental, and sustainability science expertise. 

The intent of these discussions was to devise a list of search strings for the systematic review that would 
represent multiple stakeholder viewpoints and generate a comprehensive list of literature search results 
that was not overly duplicative, but still left as few gaps in overall search results as possible. These 
discussions resulted in the creation of 216 unique search strings containing one environmental term (e.g., 
“Land cover”, biodiversity) and one hydropower term (e.g., dam,  powerhouse). The “scientific 
categories” from the “Hydropower Environmental Terminology” paper produced as part of this project 
formed the basis for the environmental terms in addition to major biological groups and terms that ORNL 
staff thought would help yield unique and pertinent search results. Hydropower terms in search strings 
were named based on input from ORNL hydropower engineering staff. The Boolean term “OR” was used 
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in cases where multiple forms of words searching for the same thing were used in search strings (e.g., 
“Hydropower OR Hydroelectric”) and asterisks were used to enable searching for multiple endings on 
words (e.g., “Fragment*” would search for “fragment, fragmented, fragments, fragmentation, 
fragmenting, etc.). Because some of the search strings were quite general and yielded large amounts of 
information that did not pertain to hydropower or environmental sciences, an initial screening of search 
strings was conducted using Google Scholar searches for each strings recording the number of results 
(CEE 2013). The titles of the first seven results (the number of search results that fit on the average 
screen) were then surveyed as an indicator of whether the string would provide useful results for this 
review by noting whether the results contained environmental information. If any one of the first seven 
results pertained to environmental effects in the title, the search string was categorized as containing 
information potentially useful for this project and was retained for further use. If search strings did not 
contain information potentially useful for this project, the search string was discarded. For instance, the 
search string “metric* dam*” (see Table 1 caption for explanation of asterisks and quotations in search 
strings) was discarded because all seven results were related to the field of particle physics. In total, 150 
unique search strings were retained from the initial search screen. It is this list of 150 search strings that 
will be presented to stakeholders for input. 

Study inclusion criteria

The final list of search strings was searched using Google Scholar during 9 September, 2016 
through 22 September, 2016. The first 200 search results were screened for potential further 
inclusion in the review. All peer-review papers that contained mention of environmental 
characteristics at hydropower facilities in the paper title, abstract, or executive summary in 
addition to papers that contained terms that signaled potential relevance to this project were 
retained for further review. An example of the type of paper that signaled potential relevance to 
this project that was retained would be a paper that discussed watershed land use change over a 
period of time because hydropower development and reservoir inundation is sometimes 
calculated in land use change statistics. Likewise, papers that discussed the response of an 
organism or group of organisms to flow or river regulation were retained for further review even 
if hydropower was not specifically mentioned. Papers that were further included in the review 
were entered into Mendeley (https://www.mendeley.com)—an open access web-tool for 
managing references and PDFs of literature. Papers that could not be definitively included or 
excluded based on the title and abstract were also retained for further review. Papers not 
including information on the environmental effects of hydropower were excluded and a 
Mendeley folder was created to document the citations of peer-reviewed papers that were 
screened but not included in the catalog. In this way, interested parties can gain a better 
understanding of why a study was or was not included in the review. 

Database creation

Papers retained were searched for metrics characterizing the environmental effects of 
hydropower as well as for other information relevant to the metric such as values, methods of 
data collection, and temporal resolution of the metric for incorporation into the catalog using 
data in tables, figures, and text of papers (Appendix A). Metrics were considered as any means, 
either quantitative or qualitative, of characterizing the environment at, near, or associated with a 
hydropower plant. The database of metrics was then georeferenced and related to the NHAAP or 
GRanD hydropower databases where possible to create a spatially-related database of 
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hydropower environmental characteristics. A bibliography of papers that passed the initial 
review filter but did not contain metrics relevant to this study are provided in Appendix B.

Catalog creation

To gain an understanding of what metrics have been most commonly used and most useful for describing 
the environmental effects of hydropower, a catalog indexed by metric was created. This catalog also 
contained summaries of metric usage including the number of times, locations, and studies that used each 
metric as well as a narrative description. Summarized metrics were also then coded with unique 
identifiers corresponding to metric type, category, and number.

Data analysis             

All data analysis was conducted in R (Version 3.2.2, “Fire Safety”). A kappa statistic (κ) was calculated 
on a subset of 25% search results to quantify consistency in study inclusion between two article reviewers 
(ORNL staff Dr. Brenda Pracheil and Dr. Ryan McManamay), calculated as 

κ=(po-pe)/(1-pe )

where po is the observed agreement of article inclusion among those rating articles and pe is the 
probability of random agreement between reviewers calculated from the data collected. Reviewers in 
complete agreement would yield a κ=1 and agreement no greater than that expected by random chance 
(pe) would yield a κ < 0. A κ > 0.50 was required between a pair of reviewers before searches were 
concluded to be of sufficient consistency.  The k-value between the two in this study was 0.86.

LITERATURE CITED

Collaboration for Environmental Evidence (CEE) (2013). Guidelines for systematic review and 
evidence synthesis in environmental management version 4.2. Environmental evidence: 
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final.pdf 
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Table 1. Search terms forming initial search strings for systematic review. Each search string was 
comprised of one environmental term and one hydropower term. Quotations around compound 
terms such as “flow regime” or “stilling basin” were used to help restrict search results to those 
relevant to this review. Asterisks were used to include multiple forms of words. For example, 
“alter*” would search for “altered”, “alteration”, “alters”, etc.

Environmental Term Hydropower Term
Alter* Conveyance
Assess* “Dam* OR Barrage*”
Biodiversity “Hydropower OR Hydroelectric”
Biot* Infrastructure
“Communit* OR Community” Powerhouse
“Connect* OR Connectivity” “Reservoir* OR Impound*”
Effect* “Tailrace* OR Tailwater*”
Environment* Turbine
Fish*
Flow*
"Flow regime*"
“Fragment* OR Fragmentation”
Geomorph*
Impact*
"Land cover"
Limnolog*
Macroinvert*
Macrophyte*
Measur*
Metric*
Mussel*
Population
Quantif*
Sediment*
Sustain*
"Water quality"
"Water quantity"
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APPENDIX B. BIBLIOGRAPY OF PEER-REVIEW LITERATURE INCLUDED IN THE 
DATABASE

Appendix B. Papers in systematic review classified as relevant to environmental effects of 
hydropower and had metrics that were included in the metric database and catalog. As of 10 
January 10, 2017, there were 97 studies included in the database.
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APPENDIX C. SUMMARY OF STUDY LOCATIONS AND ENVIRONMENTAL METRIC 
CATEGORIES EXTRACTED FROM THE 97 PEER-REVIEWED JOURNAL ARTICLES
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gories

Agostinho_e
tAl_2008 
[23]

S. America Brazil, 
Paraguay

Tres Irmaos, Corumba, 
Itaipu, and Porto 
Primavera Dams
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El Angel, Dona Julia, 
Cariblanco, and Don 
Pedro Dams

Sarapiqui, 
Toro, 
Volcan, 
Agnel, 
Tuolumne

9 W1

Andriolo_et
Al_2013 
[26]

S. America Brazil Porto Primovera Dam Paraná 4 BB

Arias_etAl_
2011 [27]

Asia Cambodia Proposed dam Mekong 6 GM, 
LC

Armanini_et
Al_2014 
[28]

N. America Canada Steephill Falls 
Generating Station

Magpie, 
Batchawan
a

3 BB

Arnekleiv_e
tAl_2007 
[29]

Europe Norway Mjosa Dam Gudbrands
dalslågen

5 BB, 
W1, 
W2

Bacheler_et
Al_2004 
[30]

N. America United 
States

Carite Dam La Plata 4 BB

Bain_etAl_1
988 [31]

N. America United 
States

Stream reach flow 
modified by four dams 
(no names provided)

Connecticu
t

12 BB, 
GM

Bambace_et
al_2007 [32]

S. America Brazil Serra da Mesa and 
Tucurui Dams

Toncatins 3 W1

Bardossy_et
al_2004 [33]

Europe Slovakia Gabicikovo Dam Danube 18 W1

Bartholow_
etal_2004 
[34]

N. America United 
States

Iron Gate, John C. 
Boyle, Keno, and 
Copco Dams

Klamath 20 W1

Bastien_etA
l_2011 [35]

N. America Canada Sarcelle Dam Eastmain 4 W2

Bates_1962 
[36]

N. America United 
States

Kentucky Dam Tennessee 2 BB
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Beamesderf
er_et_al_19
90 [37]

N. America United 
States

John Day Dam Columbia 22 W1

Beghelli_et
Al_2012 
[38]

S. America Brazil Itupararanga Dam Sorocaba 9 BB, 
W2

Beilfuss_et_
al_1994 [39]

Oceania Australia Windamere Dam Cudgegong 12 W1

Bell_1985 
[40]

N. America Canada Seton Dam Seton 2 W1

Benchimol_
et_al_2014 
[41]

S. America Brazil Balbina Dam Uatuma 6 W1

Benejam_et
Al_2016 
[42]

Europe Spain Sixteen small 
hydropower plants: 
Brutau 1, Brutau 2, 
Pardines, El Molí 
Rialp, Feitús, 
Cruanyes, Molí de 
Sart, Matabosch, 
Montagut, Molí Gran 
Pont Vell, Cal Gat, 
Surribes, L'Escala, La 
Cubia, Fàbrica Tomàs, 
Crous

Upper Ter 9 BB, 
GM

Benjankar_e
tAl_2012 
[42]

N. America United 
States

Libby Dam Kootenai 3 BB, 
W1

Benn_et_al_
1994 [43]

Africa Zambia, 
Zimbabwe, 
Mozambiq
ue

Kariba, Kafue George, 
and Cahora Bassa 
Dams

Zambezi, 
Kafue

9 W1

BennettAnd
Keevil_201
0 [44]

N. America Canada Trent-Severn 
Waterway locks and 
dams

Trent-
Severn 
Waterway

1 BB

Bergman_et
_al_2014 
[45]

Asia Israel Nahal Oz Dam Nahal 
Yare'akh 
River

9 W1

Berkes_198
2 [46]

N. America Canada La Grande 1 Dam La Grande 5 BB

Bhatt_and_
Khanal_201
0 [47]

Asia Nepal Indrawati III Dam Indrawati 15 W1, 
W2

Bhatt_et_al_
2011 [48]

Asia Nepal Upper Bhotekoshi 
Hydropower Project

Bhotekoshi 19 W1

BhattAndKh
anal_2012 
[49]

Asia Nepal Upper Bhotekoshi 
Hydropower Project

Bhotekoshi 18 W1, 
W2

Bhutiani_et
Al_2014 
[50]

Asia India Tehri Dam Bhagirathi 20 W2
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Bini_etAl_1
999 [51]

S. America Paraguay Itaipu Dam Parana 
Yacyreta

13 BB, 
W1

Black_et_al
_2005 [52]

Europe Scotland Megget Dam Allt a' 
Chireachai
n, Megget

333 BB, 
CF, 
GM, 
ID, LC, 
W1, 
W2

Bond_et_al_
1978 [53]

Africa Mozambiq
ue

Cahora Bassa Dam Zambezi 53 BB, 
GM, 
ID, LC, 
W1, 
W2

Branco_etAl
_2012 [54]

Europe Portugal A total of 196 stream 
sampling sites in three 
river basins.

Tagus, 
Mondego, 
Vouga

27 BB, 
CF, 
GM, 
ID, 
W1, 
W2

Bravard_et_
al_1999 [55]

Europe France River reaches (no 
named dams)

Rhone, 
Drôme, 
Drac, Ain

6 CF, 
GM, 
W1

Budhu_et_al
_1994 [56]

N. America United 
States

Glen Canyon Dam Colorado 5 GM, 
W1

Calles_et_al
_2013 [57]

Europe Sweden Ätrafors HEP Atran 6 BB, 
W1

Callisto_et_
al_2005 [58]

S. America Brazil Paulo Afonso, Xingo, 
and Moxoto Dams

Sao 
Francisco

22 BB, 
W1, 
W2

Carley_et_al
_2012 [59]

N. America United 
States

Daguerre Point and 
Harry L. Englebright 
Dams

Yuba 12 GM, 
W1

Chicharo_et
_al_2006 
[60]

Europe Portugal Alqueva Dam Guadiana 23 BB, 
W1, 
W2

Chiu_et_al_
2013 [61]

Asia Taiwan Unnamed dam Dajia 7 BB, 
GM

Churchill_2
013 [62]

N. America United 
States

Denison Dam Red 21 BB, 
W1, 
W2

Craven_et_a
l_2010 [63]

N. America United 
States

Flint River and R L 
Harris Dams

Flint, 
Tallapoosa

44 BB, 
W1

Dai_et_al_2
011 [64]

Asia China Three Gorges Dam Yangtze 12 W1, 
W2

Dauble_198
6 [65]

N. America United 
States

Priest Rapids Dam Columbia 7 BB, 
CF, 
W2
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de_Almeida
_etal_2005 
[66]

Europe Portugal Fourteen hydropower 
plants: Ribeiradio, Sr.a 
do Monforte, Alvito, 
Pêro Martins, Atalaia, 
Asse-Dasse, Castelo 
de Paiva, Castro Daire, 
Póvoa, Midões, 
Alvarenga, Pinhosão, 
Portela, and 
Girabolhos

Vouga, 
Côa, 
Ocreza, 
Mondego, 
Paiva

2 W1

deAlmeida_
et_al_2003 
[67]

S. America Brazil Barra Bonita, Ibitinga, 
Mario Lopes Leao, 
Tres Irmaos, 
Taquarucu, Nova 
Avanhadava, Rosana, 
Capivara, and Bairi 
Dams

Tiete, 
Paranapem
a

3 BB

Dean_and_S
chmidt_201
3 [68]

N. America United 
States

Caballo, Elephant 
Butte, Luis L. Leon, 
La Boquilla, and 
Francisco I. Madera 
Dams

Rio 
Grande, 
Rio 
Conchos

10 GM, 
W1

Duchemin_e
t_al_1995 
[69]

N. America Canada Laforge 1 and La 
Grande 2 Dams

LaForge, 
La Grande

20 W1, 
W2

Ebel_1969 
[70]

N. America United 
States

Priest Rapids, 
McNary, Ice Harbor, 
Grand Coulee, 
Bonneville, Chief 
Joseph, The Dalles, 
Wanupum, Rocky 
Reach, and Rock 
Island Dams

Columbia, 
Snake, 

18 BB, 
CF, 
W1, 
W2

Effler_et_al
_1988 [71]

N. America United 
States

Cannonsville Dam Delaware 25 W2

Englund_et_
al_2008 [72]

Europe Sweden Mallengan Lillian 16 BB, 
LC, 
W2

FosterAndR
ahs_1985 
[73]

N. America Canada Proposed dam Stikine 9 BB

Frobrich_et
_al_2007 
[74]

Asia Turkemeni
stan

Kaparas Dam Amu 
Darya

10 W1, 
W2

Gailbraith_a
nd_Vaughn
_2009 [75]

N. America United 
States

Pine Creek and Broken 
Bow Dams

Little, 
Mountain 
Fork

13 BB, 
W1

Gain_et_al_
2013 [76]

Asia Tibet Zangmu Dam Brahmaput
ra

28 W1
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Galbraith_et
_al_2015 
[77]

N. America United 
States

Parr Shoals, Upper 
Androscoggin, 
William O'Huske Lock 
and Dam, New 
Savannah Bluff Lock 
and Dam, Adam T. 
Bower Memorial 
(inflatable) Dam, 
Amoskeag, Falls 
Village, Holts Pond 
Dam, Holyoke, 
Sinclair, Lloyd Shoals, 
Tillery, Oxford, 
Santee, Tar River 
Reservoir Dam, John 
H. Kerr

Broad, 
Androscog
gin, Cape 
Fear, 
Savannah, 
Susquehan
na, 
Merrimack
, 
Housatonic
, Neuse, 
Connecticu
t, Oconee, 
Ocmulgee, 
Pee Dee, 
Catawba, 
Santee, 
Tar, 
Roanoke

9 BB, 
W1

Gelwick_an
d_Mathews
_1990 [78]

N. America United 
States

Denison Dam Red River 15 BB, 
W1, 
W2

Gobo_etAl_
2014 [79]

Africa Nigeria Kainji Dam Kainji 5 BB, 
GM, 
W1

Graf_2006 
[80]

N. America United 
States

Albeni Falls, Beaver, 
Blakely Mountain, 
Buford, Center Hill, 
Coolidge, Dnison, 
Douglas, Eufaula, 
Flaming Gorge, 
Folsom, Fontana, 
Grand Coulee, Greers 
Ferry, Hartwell, 
Hungry Horse, John H. 
Kerr, Keystone, 
Kinzua, Monticello, 
Navajo, Norfork, 
Norris, Oologah Lake, 
Owyhee, Palisades, 
Pine Flat, Sam 
Rayburn, Sanford, 
Sardis, Shasta, 
Tenkiller Ferry, Tiber, 
Tuttle Creek, Whitney, 
and Wright Patman 
Dams

Allegheny, 
American, 
Angelina, 
Arkansas, 
Big Blue, 
Brazos, 
Canadian, 
Caney 
Fork, 
Chattahooc
hee, 
Clinch, 
Columbia, 
Flathead, 
French 
Broad, 
Gila, 
Green, 
Illinois, 
Kings, 
Little Red, 
Little 
Tallahatchi
e, Little 
Tennessee, 
Marias, 

52 GM, 
W1
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North Fork 
of the 
White, 
Ouachita, 
Owyhee, 
Pend 
Oreille, 
Putah 
Creek, Red 
River, 
Roanoke, 
Sacrament
o, San 
Juan, 
Savannah, 
Snake, 
Sulphur, 
Verdigris, 
White

Grill_et_al_
2014 [81]

Asia China Multiple existing and 
proposed dams

Mekong 132 CF, 
W1

Guo_etAl_2
000 [82]

Asia Indonesia Wadaslintang Dam Lunto 8 GM, 
ID, LC, 
W1

Hay_et_al_2
008 [83]

N. America United 
States

Gavins Point and Fort 
Randall Dams

Missouri 33 BB, 
W1, 
W2

Heidari_et_
al_2013 [84]

Asia Iran Tarik Dam Sefid-Rud 4 BB

Hughes_et_
al_2011 [85]

N. America United 
States

Bonneville Dam Columbia 8 ID, W1

Humborg_et
Al_2006 
[86]

Europe Sweden Baltic Sea catchment Vistula, 
Daugava, 
Oder

21 CF, 
GM, 
LC, 
W1, 
W2

Huo_etAl_2
015 [87]

Asia China Xiangjiaba Dam Jinsha 18 W2

Huraut_et_a
l_2002 [88]

Asia Philippines Ambuklao Dam Agno 5 GM

Istvanovics_
etAl_2010 
[89]

Europe Hungary Tisza Dam Tisza 17 BB, 
W1, 
W2

Jepsen_et_al
_1998 [90]

Europe Denmark Tange Dam Gudenå 2 BB

Jones_etAl_
2014 [91]

N. America United 
States

Norris Dam Clinch 7 BB, 
GM

KasterAndJ
acobi_1978 
[92]

N. America United 
States

Eau Pleine Dam Big Eau 
Pleine

2 BB, 
W1

Kemenes_et S. America Brazil Balbina Dam Uatuma 3 W2
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Al_2007 
[93]
Klaver_et_a
l_2007 [94]

Europe Romania, 
Serbia, 
Slovakia

Iron Gate II and 
Gabicikovo Dams

Danube 516 GM, 
W1, 
W2

Kotut_etAl_
1998 [95]

Africa Kenya Turkwel Dam Turkwel 4 BB

KumarAndS
harma_2016 
[96]

Asia India Koteshwar Dam Bhagirathi 7 GM, 
LC, 
W1, 
W2

Laine_etAl_
1998 [97]

Europe Finland Isohaara Dam Kemijoki 8 BB, 
GM, 
ID, 
W1, 
W2

Larinier_20
08 [98]

Europe France 77 small-scale hydro 
dams in clusters along 
7 rivers

Gave 
d'Oloron, 
Corrèze, 
Vézère, 
Salat, Gave 
de Pau, 
Neste, 
Saison

6 BB

Lehman_20
11 [99]

N. America United 
States

Ford Lake Dam Huron 34 W1, 
W2

Ma_et_al_2
016 [99]

Asia China Ertan Dam Yalong 
Jiang

2 W1, 
W2

Malini_and_
Rao_2014 
[100]

Asia India Gangapur Dam Godavari 6 GM

Meile_et_al
_2011 [101]

Europe Switzerlan
d

Chippis, Vouvray, 
Steg, Stalden, Salanfe, 
Barberine, Ackersand, 
Bitsch, Mauvoisin, and 
Grand Dixence Dams

Navisence, 
Rhone, 
Vispa, 
Salanfe, 
Barbarine

6 W1

Miloskovic_
et_al_2013 
[102]

Europe Serbia Gruza Dam Gruza 28 BB, 
W2

Mims_et_al
_2013 [103]

N. America United 
States

McCloud, Glen Ferris, 
Dillon, Mohawk, 
Morrow Point, 
Ridgeway, Trenton, 
Wanship, Yellowtail, 
and Delaware Dams

McCloud, 
Kanawha, 
Licking, 
Wlhonding
, Gunnison, 
Uncompah
gre, 
Republican
, Weber, 
Bighorn, 
Olentangy

31 BB, 
CF, ID, 
W1

Mistak_etAl N. America United Stronach Dam Pine 57 BB, 
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_2003 [104] States GM, 
W2

Muir_et_al_
2001 [105]

N. America United 
States

Lower Granite, Lower 
Monumental, and 
McNary Dams

Snake, 
Columbia

7 BB, 
W1

Politano_et
Al_2012 
[106]

N. America United 
States

Wells Dam Columbia 2 W2

Ribi_etAl_2
014 [107]

Europe Switzerlan
d

Maigrauge Dam Sarine 4 BB, ID, 
W2

Ribolli_etAl
_2012 [108]

S. America Brazil Machadinho Dam Pelotas 7 BB

Scruton_etA
l_2005 
[109]

N. America Canada West Salmon Dam West 
Salmon

8 BB, 
GM, 
W1, 
W2

Smith_etAl_
2016 [110]

N. America Canada E.B. Campbell Dam Saskatche
wan

6 GM

Soltani_et_a
l_2010 
[111]

Asia Iran 15-Khordad Dam Ghomrud 11 ID, LC, 
W1, 
W2

Song_et_al_
2015 [112]

Asia China Three Gorges Dam Yangtze 8 GM, 
W1

Stevens_etA
l_1995 
[113]

N. America United 
States

Glen Canyon Dam Colorado 7 BB, 
GM, 
LC

Tamene_et_
al_2006 
[114]

Africa Ethiopia Group of micro dams 
for supplemental 
household irrigation.

Tekeze 
River 
Basin

18 GM, 
ID, LC, 
W1

Thomaz_et
Al_2009 
[115]

S. America Paraguay Itaipu Dam Parana 
Yacyreta

7 BB, 
W2

Thompson_
etAl_2011 
[116]

N. America United 
States

Camino Dam Silver 
Creek

13 BB, 
GM, 
W1, 
W2

Tufford_et_
al_1999 
[117]

N. America United 
States

Santee Dam Santee 37 BB, 
W1, 
W2
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APPENDIX D. BIBLIOGRAPHY OF PEER-REVIEW LITERATURE THAT PASSED THE 
INITIAL REVIEW FILTER BUT WAS NOT INCLUDED IN THE DATABASE  
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